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Molecular Simulation of Phase Coexistence: Finite-Size 
Effects and Determination of Critical Parameters for 
Two- and Three-Dimensional Lennard-Jones Fluids 

A. Z. Panaglotopoulos-'- 

The subject of this paper is the investigation of finite-size effects and the deter- 
mination of critical parameters for a class of truncated Lennard-Jones poten- 
tials. Despite significant recent progress in our ability to model phase equilibria 
in multicomponent mixtures from direct molecular simulations, the accurate 
determination of critical parameters remains a difficult problem. Gibbs ensemble 
Monte Carlo simulations with systems of controlled linear system size are used 
to obtain the phase behavior in the near-critical region for two- and three- 
dimensional Lcnnard Jones fluids with reduced cutoff radii of 2, 2.5, and 5. For 
the two-dimensional systems, crossover of the effective exponent for the width 
of the coexistence curve from mean field Ifl = I/2) in the immediate vicinity of 
the critical point to Ising-like 1//= 1/81 farther away is observed. Critical 
parameters determined by fitting the data that follow Ising-like behavior arc in 
good agreement with literature values obtained with finite-size scaling methods. 
For the three-dimensional systems, no crossover to mean field-type behavior 
was apparent. Extrapolated results for the critical parameters are consistent with 
literature estimates for similar fluids. For both two- and three-dimensional 
fluids, system size effects on the coexistence curves away from the critical point 
are small, normally within simulation statistical uncertainties. 

KEY WORDS: critical exponents: critical point: critical temperature: finite- 
size effects: Gibbs ensemble: Lennard-Joncs: Monte Carlo simulation. 

I. INTRODUCTION 

Thc determination of phase coexistence properties of systems by means of 
molecular simulations is an area that has experienced significant growth in 
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recent years. Tile availability of new algorithms for this purpose, such as 
the Gibbs ensemble methodology for determination of phase equilibria of 
pure fluids and mixtures [1, 2] or free-energy calculation methods for 
solids [3],  has contributed to this growth. The interest in these calculations 
stems from the importance of the phase behavior for industrial and 
technological applications and the appeal of establishing a direct connec- 
tion between phase behavior and intermolecular forces acting in a system. 

Some years ago, the author presented a paper entitled "Exact Calcula- 
tions of Fluid-Phase Equilibria by Monte Carlo Simulations in a New 
Statistical Ensemble" to a previous Symposium on Thermophysical 
Properties [4]. By the word "exact," I tried to emphasize the distinction 
between computer simulation methods and approximate theoretical techni- 
ques. In retrospect, this was an unfortunate choice of words. Simulations 
can, in principle, provide accurate numerical results for a system but are 
n e v e r  exact. Among the many possible pitfalls for simulators, especially 
those interested in phase transitions, are the effects of the finite extent of 
simulated systems on the observed results. 

Finite-size effects are clearly present in the vicinity of critical points, 
where correlation lengths for the macroscopic systems diverge and such 
divergences cannot be captured in a simulation of a finite system. Finite- 
size scaling theory [5] has allowed the accurate estimation by simulation 
of the location and universality class of critical points for many physically 
interesting models. Unfortunately, the techniques of finite-size scaling 
as developed to date are much easier to apply to lattice models than to 
continuous-space models of the type often of interest to engineers. A sub- 
system-block-density distribution analysis [6-] based on finite-size scaling 
theory has been used to determine the critical point of a two-dimensional 
Lennard-Jones system. The block-density distribution technique is based 
on observing a large system under conditions of constant volume, and 
focusing on smaller subsystems of progressively larger size. For systems 
just below a vapor-liquid critical point, large density fluctuations are 
observed inside the subsystems, corresponding to the transient formation 
of "'droplets" and "'bubbles" of liquid and gas, respectively. A different 
and potentially very powerful approach based on grand-canonical Monte 
Carlo simulations at a range of temperatures [7]  has been recently for- 
mulated and applied to a two-dimensional Lennard-Jones system. It must 
be emphasized that although finite-size scaling theory can provide quite 
accurate estimates for the critical points of model fluids, the computational 
requirements for continuous potentials are heavy. The study of Rovere 
et  al. [6-] took "several hundred CPU hours on CRAY-XMP supercom- 
puters" and Wilding and Bruce [7]  used long Monte Carlo runs on a 
massively parallel machine. 
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Despite the existence of numerous observations and a firmly grounded 
theory of finite-size effects at both second- and first-order phase transitions, 
one often finds in simulation studies of detailed atomistic models 
statements that "system size effects were negligible." The confusing situa- 
tion with respect to finite-size effects for simulations in the Gibbs ensemble 
is a case in point. Studies of lattice models [8]  and a symmetric square- 
well mixture at constant density [9]  have found significant shifts of the 
apparent coexistence curves with system size, especially for two-dimen- 
sional systems, while many Gibbs-ensemble simulations of continuous- 
space models have not detected effects of system size on the observed 
phase coexistence behavior [ I, 9]. The results for a symmetric square-well 
mixture [9]  were obtained without using the volume fluctuation step nor- 
really required for pressure equilibration in the Gibbs ensemble, because of 
the special symmetry. A subsequent study for a similar system performed 
at constant pressure [-10] did not find finite-size effects. There are no 
accepted general guidelines regarding the likely importance of finite-size 
effects in Gibbs ensemble simulations. 

A related important question is the determination of critical parameters 
for a model fluid from simulations. The results of Mon and Binder ['8] 
and of Recht and Panagiotopoulos [9] throw some doubt on the validity 
of commonly used extrapolations of coexistence curves obtained from 
Gibbs-ensemble simulations to the critical point using scaling relationships 
[2, 10-12]. The "order parameter" for the vapor-liquid phase coexistence 
is the difference in density of the liquid and gas phases. On approach to the 
critical point, the width is described by a characteristic exponent, [~, 

(PL--Pc~) ~ ( T o - - T )  I~ (1) 

where PL and p(; are the liquid and gas densities, T is the temperature, and 
T~. is the critical temperature. The exponent [,¢ depends on the universality 
class of the transition. For macroscopic systems [3 = I/8 in two dimensions 
and [3~ 1/3 in three [13]. However, as Mon and Binder [8]  point out, the 
"'effective" exponents observed in simulations conform to these expectations 
only when the correlation length is much less than the simulation box size. 
On approach to the critical point, the correlation length diverges. There- 
fore, sufficiently close to the (macroscopic) critical point, we expect to see 
a crossover of the effective exponents to their mean-field value, namely, 1/2. 
For continuous potentials, typical statistical uncertainties for Gibbs- 
ensemble simulations close to critical points are large and the observation 
of the crossover of tile exponents quite difficult. 

The main goal of this paper is to present a systematic study of finite-size 
effects and the approach to the critical point for a class of Lennard-Jones 
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potentials in two and three dimensions. We attempt to answer the two 
questions implicitly posed in the previous paragraphs, namely, (a) Which 
potentials are likely to show significant finite-size effects in Gibbs-ensemble 
simulations'? and (b) What are valid ways to estimate critical parameters 
for a given model potential, and how uncertain are these parameters? The 
method we use is to obtain numerical estimates for the phase coexistence 
envelopes and critical parameters of Lennard-Jones fluids with various 
cutoffs, ranging from two to five molecular diameters. We use a range of 
linear system sizes and pay particular attention to maintaining the linear 
dimensions of both regions in the simulations constant, something that has 
not been the usual practice in previous Gibbs-ensemble simulations. 

2. M O D E L  SYSTEMS AND SIMULATION M E T H O D  

The much studied Lennard-Jones intermolecular potential model is 
the natural choice for the present study. The potential, ~//U, is of the form 

(2) 

where e is the potential well depth parameter, a is the size parameter, and 
r the distance between particles. Recuced (dimensionless) quantities that 
are indicated by a superscript asterisk are defined so that distances are 
scaled by a and temperatures by e/kB, where kn is Boltzmann's constant. 
Since we are interested in studying systems of varying size, we would like 
to avoid using long-range corrections for the part of the intermolecular 
potential that extends beyond the simulation box edge. The potential is 
thus truncated at a cutoff distance, re, 

J//Lj(r) = ~'~//LAr), r~< r~ 
[0, r > r ~  (3) 

The additional benefit of using a cutoff potential is that detailed com- 
parisons can be made with previous finite-size scaling studies of the critical 
properties of Lennard-Jones systems which were performed with the 
two-dimensional version of the model and r* =2.5 [6] and r * = 2  [7].  
In additional to these two cutoffs, r*-=5 was selected for this study 
in an attempt to come as close as possible to the behavior of the "full" 
(untruncated) potential without having to use excessively large simulation 
boxes. 

In order to investigate finite-size effects, control of the linear dimen- 
sions of the simulations cells is necessary. The size of each of the two boxes 
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fluctuates in Gibbs-ensemble simulations, and system size can only be 
approximately controlled. Approximate control of system size was achieved 
by varying the number of particles and initial densities of the two regions. 
This required preliminary estimates of the equilibrium densities for each 
system and temperature studied. The preliminary estimates were obtained 
From shorter exploratory runs. The target linear system sizes studied were 
L * =  16, 24, and 32 in two dimensions and L * = 6 ,  9, and 12 in three. For 
performing finite-size scaling analysis, a wide range of linear system sizes is 
desirable. However, much larger systems could not be studied because of 
tile large number of particles required and, perhaps more seriously, because 
of the extremely long simulation runs required. Much smaller systems also 
are not feasible, because the system size cannot be smaller than twice the 
cutoff distance. The system with the larger cutoff (r* = 5) could not be 
studied in any but the larger linear system size--no finite-size scaling 
analysis is possible in this case. 

The simulation method used in this work is the Gibbs-ensemble 
Monte Carlo method [1 ]. For the one-component systems of interest to 
the present study, the method is based on performing a simulation in two 
Fegions at a constant temperature, total volume, and number of particles. 
Particle displacements within each region, volume changes, and particle 
transfers from one region to the other are performed in a way that estab- 
lishes internal equilibrium, equality of pressures, and equality of the 
chemical potentials of the two regions. The acceptance criteria for the 
Monte Carlo steps and further details of program organization are given in 
tile original papers [1, 2] and a recent review paper [14] that also lists 
applications of the method until 1992. The simulations were performed so 
that the type of step to be taken every time is decided at random with fixed 
probabilities, so that microscopic reversibility is strictly satisfied. Typical 
ratios of displacements:volume change:particle transfer steps were 
100:1:100. Because the potential is truncated, volume change steps are 
computationally quite expensive, as the potential does not scale simply 
with box size. Typical lengths of the runs were 107 Monte Carlo steps. 
Typical computing time requirements for the larger systems, which con- 
rained up to 1200 particles, were 10 h on a Convex 3800 system. 

For simulations significantly below the critical point, the identities of 
tile coexisting phases do not change in the course of the simulations and 
a region that started as a liquid phase retains its identity despite the 
statistical fluctuations in density. For such cases, the statistical uncertain- 
ties of the results are obtained by dividing the configurations obtained after 
initial equilibration into five blocks of equal length and calculating the 
uncertainties of the block averages. For simulations closer to the critical 
point, the identities of the coexisting regions change, sometimes frequently, 
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and the coexisting densities are obtained by constructing histograms of the 
frequency of observing a certain density. The statistical uncertainties in this 
case were obtained by dividing the configurations after equilibration into 
two blocks and constructing the corresponding histograms. 

3. RESULTS AND DISCUSSION 

3.1. Two-Dimensional Systems 

Results for the phase coexistence densities of the two-dimensional 
systems are given in Table I. Statistical uncertainties of the liquid- and 

Table I. Simulation Results for the Phase Coexistence Properties 
for Two-Dimensional Lennard-Jones Systems" 

L* -- 16 L* ~.. 24 L* ~ 32 

T *  t,*; t,~: /,~'; t '~  t,*; t,.,* 

, *  = 5 

0.42 0 .018141  0.753(81 0 . 0 2 3 1 4 1  0.76014J 0 . 0 2 0 1 6 1  0.75612) 
0.44 0.03216) 0.73816) 0.034t51 0.737(61 0.04019) 0.741(31 
0.46 0.046(I I ) 0.71517) 0 . 0 4 2 1 8 1  0.708(I I ) 0.04414) 0.711(5) 
0.48 0.063(10) 0.675(20) 0.06518) 0.673(20) 0.078110) 0.68516 I 
0.49 0.067(71 0.65617) 0.080116) 0 .652113~ 0.110(22) 0.658(91 
0.50 0.120(30) 0.650110) 0.130(3) 0.640(20) 0.179115) ().621124) 
0 .51 0.140(70) 0.575(75) 0.160(22) 0.600(33 ) 0.143(22) 0.553(10) 
0.52 0.190(40) 0.500(20~ 0.220(30) 0.470(30) 

,-~ = 2.5 

0.42 0 .022141  0.755(17) 0 . 0 2 3 1 4 1  0.75515) 0.03216) 0.75513) 
0.44 0.03414) 0.722(12} 0.03717) 0 . 7 2 7 1 9 1  0 .0391101  0.730(7) 
0.46 0.065(111 0.708(10) 0.072(181 0.700(8) 0.091[14) 0.710(3) 
0.48 0.128(42) 0.662(13) 0.180(10) 0.690(10) 0 .2101101 0.670(10) 
0.50 0.190(301 0.610(20) 0.230(40) 0.600(301 0 .3501501 0.530(50) 

,.* = 2 

0.41 0.03512) 0 . 7 3 1 1 5 }  0.042(10) 0 . 7 2 8 1 8 1  0 . 0 3 7 { 7 1  0.716181 
0.42 0.041(41 0 . 7 0 8 1 7 }  0 . 0 4 1 1 7 ~  0 .6921111  0 . 0 4 9 { 8 1  0.70419~ 
0.43 0.054(8) 0.691(10) 0.065( 18~ 0 . 6 7 9 { 8 ~  0 .0871201  0.697[8) 
0.44 0.065(6) 0.669(41 0.096(25 ~ 0.642137} 0 . 0 7 8 1 8 1  0.618140) 
0.45 0.080[ 101 0.650( 101 0.206125} 0.611132} 0.148121 ) 0.6041301 
0.46 0.1101201 0.530(30l 0.288(281 0.605138} 0 .2601301 0.5301301 
0.47 0 .1501201 0.380(401 

" Numbers in parentheses indicate statistical uncertainties in units of the last decimal point 
shown: 0.018141 means 0.018 _+0.004. 
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gas-phase densities are indicated in parentheses in units of the last decimal 
point for the corresponding quantity. In some cases, at the highest tem- 
peratures studied for each cutoff, results are missing because no stable runs 
could be obtained. 

An interesting observation was made in the course of performing 
simulations for systems with r* = 2. For the larger system size studied 
IL*-~32), for simulations with initial density of the low-density region 
inside the coexistence region, the system equilibrated extremely slowly. 
Even after a 107 Monte Carlo steps for a temperature some distance form 
the critical point IT*  = 0.43), the region was found to contain a mixture of 
liquid and gas, as shown in Fig. 1. This is likely due to the low interracial 
tension in the two-dimensional systems, which makes the free-energy 
penalty for formation of an interface small. This event is particularly likely 
to occur for the larger systems because then sizable, stable regions of the 
"'wrong" phase can form. This partict, lar run was discarded, and a new 
~imulation was initiated at a lower initial density, resulting in stable 
coexistence densities shown in Table I. 

To determine the effective exponents appropriate for the description of 
the width of the coexistence curves, we plot the results as ( p ~ - p * ) S  and 
I p *  - p(~* )-" versus T* [8, 9]. In order to brin~ the values in approximately 
the sarne numerical range, the ( ,o*- ,o*)  '~ curves were shifted up by multi- 
plying by 5. Typical results are presented in Figs. 2 and 3, corresponding. 
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respectively, to r* = 5 and 2.5. A clear crossover from an effective value of 
the exponent of 1/8 away from the critical point to 1/2 closer to it is seen 
in all cases. This crossover was also observed for the two-dimensional lsing 
[8 ]  and the symmetric square-well mixture in two dimensions [93. 

Away from the critical point the effect of system size on the coexistence 
densities is relatively small, often within the statistical uncertainties of the 
simulations. A possible reason for the relative small magnitude of size 
effects away from the critical point in both two-dimensional and three- 
dimensional Lennard-Jones systems discussed later can be found in the 
analysis of Smit and Frenkel [15]  on finite-size corrections to the chemical 
potential obtained from Widom test particle insertions. These finite-size 
corrections scale simply as I/N,  but their absolute magnitude for the three- 
dimensional Lennard-Jones system is the suggestion of Green et al. [10]  
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on tile importance of "'density fluctuations" on the relative strength of 
finite-size effects. In contrast to the two-dimensional continuous systems 
qudied by Recht and Panagiotopoulos [9] ,  the Lennard-Jones systems 
~tt,died here require density fluctuations for equilibration and do not show 
q ,ong  finite-size effects. 

Estimates for the critical point can. in principle, be obtained based on 
finite-size scaling analysis [8] .  This involves using the data close to the 
critical point that show "mean field-like" behavior (fi = 1/2} to obtain an 
estimate for the apparent critical temperature as a function of the linear 
system size. This extrapolation is shown by the straight least-squares lines 
through the open circles in Figs. 2 and 3. An estimate for the infinite- 
system size critical temperature can then be obtained by extrapolating the 
results at finite system lengths using the appropriate correlation-length 
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exponents [8, 9-]. Unfortunately,  this method is not easily applicable to the 
data for the systems of interest to the present study, because of the inherent 
instabilities of linear system size close to the critical point and the resulting 
large statistical uncertainties. 

An alternative is provided by the following observations. In all cases 
studied, there is an extensive range away from the critical point over which 
the data show "Ising-like'" ( /3= 1/8) behavior. On  strict theoretical grounds 
Eq. (1) is valid only in the immediate ne ighborhood of the critical point. 
However, it has been confirmed empirically for many simulated [e.g., 
Refs. 9 and 18] and real fluids that, over a surprisingly wide range of tem- 
peratures, the coexistence curves can be described by effective exponents 
close to the appropriate  universal exponents. The fitted curves to the data 
away from the critical point do not show much dependence on system size, 
as illustrated in Figs. 2 and 3. We can thus obtain useful critical tem- 
perature estimates by ignorhTg the data close to the critical point and 
extrapolating using the lsing exponents. The resulting critical temperatures 
are shown in Table II, together with data for the critical temperatures of 
comparable  systems from previous investigations. Given the critical tem- 
peratures, approximate  estimates for the critical densities can be obtained 
from the "rectilinear diameter" rule, which states that the average of 
the liquid and gas coexisting densities fall on a straight line in a 
temperature-densi ty  diagram [16] .  The weak divergence of the quanti ty 
(PL + P c - 2 p c )  very close to the critical point is difficult to observe even 
with high-precision experimental measurements and the limited accuracy of 
the simulation data does not justify taking it into account. There is no clear 
trend in the calculated critical densities for the different cutoffs. 

It is of interest to compare  our  estimated critical temperatures with 
available literature data. Wilding and Bruce [ 7 ]  have obtained accurate 
estimates of the critical parameters of the fluid with r* = 2 using finite-size 
scaling techniques and extremely long grand canonical  Monte  Carlo 
simulations. The results are in good agreement with our  estimates. Also in 

Table Ii. Critical Properties of Two-Dimensional Lennard-Jones Fluids 

r* T~ p~- Source 

None 0.515 +_ 0.002 0.355 _ 0.003 Smit and Frenkel [ 11 ] 
None 0.472 0.33 _+ 0.02 Singh eta/.  [ 17] 
5 0.497 _+ 0.003 0.38 _+ 0.01 This work 
2.5 0.472 + 0.010 0.35 + 0.01 Rovere et al. [6] 
2.5 0.477 4- 0.003 0.38 4- 0.02 This work 
2 0.44 4-0.005 0.368 4-0.003 Wilding and Bruce [7] 
2 0.446 + 0.003 0.37 + 0.01 This work 
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good agreement are our  results and those of Rovere et al. for r* = 2.5, who 
used a finite-size scaling analysis of subsystem-block-density distributions. 
There are no directly comparable  data for r* = 5, but there are two sets of 
literature results for the "full" potential. The estimate of Singh et  al. [17]  is 
clearly too low. Following a suggestion of Wilding and Bruce [7] ,  we have 
calculated the Boyle temperatures at which the second virial coefficient for 
the corresponding fluids vanishes, and we have found that the rat io  of the 
critical temperatures calculated from our  work to the Boyle temperature of 
the corresponding fluid is approximately constant. The Boyle temperature of 
the "full" potential is only 0.3% higher than the one with r* = 5, which 
suggests that the difference between the estimate of Smit and Frenkel [ 1 ] and 
our own is too high by an order of magnitude to be explained by the different 
cutoff. Since we observe here that for finite-size systems phase coexistence can 
be observed at temperatures higher than the infinite-system critical point, this 
may explain why the result of Smit and Frenkel is higher than our  estimates. 

Table Ill. Simulation Results for the Phase Coexistence Properties 
for Three-Dimensional Lennard-Jones Systems" 

L*~.6 L*~-9 L*~-I2 

T* p~, p~. P~, /'~ P* P* 

r* = 5 

1.10 0.636(4) 0.06214} 
1.15 0.594(61 0.080(91 
1.20 0.55817) 0.112(8) 
1.25 0.477(34) 0.165(15} 

r~* = 2.5 

0.95 0 .037(3)  0 .689(2} 0.035(I) 0.68712} 0.03512)  0.688(4) 
1.00 0.05113) 0 .652(9 )  0 .049(2} 0 .650(3)  0 .053(6)  0.645(4) 
1.05 0.072161 0 .610(6 )  0 .069(7)  0 .610(6)  0 .074(8)  0.613{5) 
1.10 0.090(10) 0.590(10) 0.104(11} 0.567{7) 0 .111(4)  0.574(9) 
1.15 0.120{20} 0.520(20) 0.140(20} 0.490(20) 0 .156(8)  0.521(3) 
1.17 0.160( 301 0.430( 30 ) Homogeneous 

r~* = 2 

0.85 0.030(1)  0 .691(3}  0 .033(3)  0 .694{4)  0 .032(3)  0.690(4) 
0.90 0.048(6} 0 .65218)  0.04813)  0 .656(3)  0 .050(3 )  0.657(5) 
0.95 0.067(2)  0.600113) 0 .070(8)  0 .611(4)  0 .073(3 )  0.61518) 
1.00 0.119(17) 0 .559(6)  0.111114) 0.557(10) 0.103(10) 0.548110) 
1.05 0.170(30) 0.510(30) 0.215135} 0.495(211 0.252(22) 0.468[23) 

" Numbers in parentheses indicate statistical uncertainties in units of the last decimal point 
shown: 0.63614) means 0.636 + 0.004. 
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3.2. Three-Dimensional  Systems 

Our  results for the three-dimensional systems are presented in Table III. 
A sample plot of the scaled coexistence curves versus temperature is shown 
in Figs. 4 and 5, which correspond to i"* = 2.5 and 2. As observed previously 
I-9], there does not seem to be a crossover between "mean-field" and "Ising- 
like" values of the effective exponents for the three-dimensional systems. 
Away from the critical point we could obtain almost as good a least-squares 
fit of the data with either exponent. However,  if points close to the critical 
point are included, especially for the larger systems, curvature for the 
points corresponding to ,8 = 1/2 appears, indicating that the data are better 
described with [3= 1/3. The curvature is most apparent  for the data  for 
L* ~ 9 in Fig. 4 and for all lengths in Fig. 5. 
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The determination of the critical parameters for the three-dimensional 
fluids can proceed in the same way as previously, by extrapolating the 
data corresponding to f l =  1/3. In contrast to the situation for the 
two-dimensional systems, some size dependence remains for the critical 
point parameters, with the smaller systems having slightly higher apparent 
critical points. This is clear in Figs. 4 and 5 by the shift of the 
intercepts of the straight lines going through the data points and the axis 
lilacs corresponding to zero width of the coexistence curve. The accuracy of 
the data does not justify sophisticated extrapolations, so a simple I/N 
dependence was assumed to obtain the critical parameters listed in 
Table IV. For the r * = 5  system, only a single system size could be 
meaningfully studied, so we report the critical temperature for that system 
size in Table IV. 
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Table IV. Critical Properties of Three-Dimensional Lcnnard-Jones Fluids 

,'J" T~ p~ Source 

None 1.316 + 0.003 0.304 + 0.006 Smit [ 18] 
None 1.310 0.314 Lotfi et al. [19] 
5 1.281 + 0.005 0.32 + 0.01 This work 
2.5 1.176 + 0.008 0.33 + 0.01 This work 
2 1.061 + 0.005 0.32 + 0.01 This work 

Comparisons of the results with literature data is complicated by the 
fact that most previous literature studies were for the full [I ,  2] or the cut- 
and-shifted potentials [18],  not for the truncated potential. If we assume 
that the ratio of the critical to the Boyle temperatures of each fluid is the 
same for all fluids (a reasonable assumption based on our calculated 
critical temperatures), then we can perform the following approximate 
comparisons. From Smit's estimate [2]  of T* = 1.316 for the full potential, 
we obtain an extrapolated value T* = 1.300 for the potential cut at r* = 5. 
This estimate is somewhat higher than our own, but the difference is just 
outside the combined simulation uncertainties. In even better agreement 
with our estimate would be an extrapolation of the data of Lotfi et  al. 

[19]. From Smit's estimate [18] of T * =  1.085 for the cut-and-shifted 
potential at i'* = 2.5, we obtain T* = 1.201 for potential cut at i"* = 2.5, 
which is also close to but higher than our own estimate. The extrapolation 
procedure itself may be partly to blame for the differences and it seems 
justified to clarify whether this small discrepancy can be resolved by 
detailed calculations with controlled linear system sizes. 

4. CONCLUSIONS 

One of the main conclusions of this work is that finite-size effects in 
phase equilibrium calculations of continuous-space models are important 
for systems of low dimensionality. For such systems, calculation of the 
phase behavior, especially close to critical points, should be done with 
extreme care and preferably by means of simulation techniques for which 
precise control of system linear dimensions is possible. Simulations in the 
Gibbs ensemble cannot achieve the high precision required for detailed 
finite-size scaling analysis because of the variability in number of particles 
and density of each of the two regions. In three dimensions finite-size effects 
are present, but not very pronounced for potentials of the Lennard-Jones 
type, even for relatively short cutoffs. 

Away from the critical point, there are no significant effects of 
system size on the location of the coexistence curves for potentials of the 
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Lennard-Jones type. This is in contrast to the large effects of system size 
on the coexistence curves observed for two- and three-dimensional sym- 
metric square-well mixtures simulated under constant-volume conditions 
[9],  for which no density fluctuations are necessary for reaching equi- 
librium in Gibbs-ensemble simulations. 

This procedure for the determination of critical constants, namely, the 
use of Eq. (1) with the appropriate lsing exponents together with the 
rectilinear diameter rule, has been used in most previous Gibbs-ensemble 
studies to determine critical temperatures. The analysis shown here suggests 
that this is a valid procedure only if data in the immediate vicinity of the 
critical point that follow mean-field-like behavior are discarded. Critical 
temperatures can be determined within an accuracy of + 1 %  or better 
using this procedure. Critical densities obtained from the rectilinear 
diameter rule are subject to significantly larger uncertainties than the 
critical temperatures. 

Finally, it seems that the apparent critical exponents obtained in 
Gibbs-ensemble simulations depend on the linear system size and the dis- 
tance from the critical point. In the light of this finding, it is hard to justify 
using Gibbs-ensemble simulations to determine apparent critical exponents 
for different potential models without precise control of system size and 
explicit consideration of possible crossover behavior in the immediate 
vicinity of the critical point. 
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